Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John A. Schlueter,* Russell J. Funk and Urs Geiser

Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Correspondence e-mail: JASchlueter@anl.gov

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.039$
$w R$ factor $=0.130$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Aminopyrimidine

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}$, the nearly planar 5-aminopyrimidine molecule has twofold rotation symmetry. The crystal structure is stabilized by a hydrogen bond between the amino group and the ring N atoms, thus forming a twodimensional network parallel to the $a b$ plane.

Comment

Recently, there has been considerable interest in the use of pyrimidine (pym) as a bridging ligand for the formation of coordination polymers. Strong magnetic couplings can be mediated by μ-bonded pym ligands. One-, two- and threedimensional structural motifs have been studied. For example, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}($ pym $)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ behaves as a uniform $S=\frac{1}{2}$ antiferromagnetic chain (Feyerherm et al., 2000; Yasui et al., 2001). Structurally, the complex $\mathrm{Cu}(\mathrm{dca})\left(\mathrm{NO}_{3}\right)(\mathrm{pym})\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{dca}=$ dicyanamide) is two-dimensional, but magnetically it behaves as a one-dimensional chain, because the magnetic coupling through the 3 -atom pym bridges is significantly stronger than that through the 5 -atom dca bridges (Manson et al., 2003). Examples of structurally three-dimensional materials include $\mathrm{Cu}_{3}(\mathrm{dca})_{6}(\mathrm{pym})_{2} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$ (Manson et al., 2003) and $\mathrm{Cu}\left(\mathrm{HCO}_{2}\right)_{2}$ (pym) (Manson et al., 2005). The former of these has a large exchange coupling constant $\left(J / k_{\mathrm{B}}=-69.4 \mathrm{~K}\right)$, while the latter exhibits long-range magnetic ordering below $T_{\mathrm{N}}=$ 2.8 K. Spontaneous magnetization is also observed in the three-dimensional complexes $M(\mathrm{dca})_{2}(\mathrm{pym})(M=\mathrm{Fe}$ or Co$)$, with ordering temperatures of 3.2 and 1.8 K , respectively (Kusaka et al., 2000).

(I)

We are interested in increasing the dimensionality in these systems through the use of pyrimidine derivatives with hydrogen-bonding functionalities. Aminopyrimidines (apym) are one promising family that has this capability. 2-Aminopyrimidine (2-apym) has been used extensively as a ligand in coordination complexes. For example, a novel molecular tubelike structure containing monodentate 2-apym ligands and the relatively rare $\mu_{1,3,5}$ coordination mode for the dca anions has been reported for $M(\mathrm{dca})_{2}(2$-apym $)(M=\mathrm{Co}$ or Ni$)$ (Jensen et al., 2000). Monodentate 2 -apym ligands are also found in the complex $\mathrm{Cu}(\mathrm{dca})_{2}(2 \text {-apym })_{2}$, which forms one-dimensional dibridged $\mu_{1,5}$-dca chains (van Albada et al., 2000). When 2apym acts as a bridging ligand, strong exchange coupling

Received 6 December 2005 Accepted 16 December 2005 Online 23 December 2005

Figure 1
A view of the molecular structure of 5-aminopyrimidine, showing the atom-numbering scheme. The prime corresponds to symmetry code (i) in Table 1. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
contants can be obtained, e.g. in $\left[\mathrm{Cu}_{4}(2-\mathrm{apym})_{6}\left(\mu-\mathrm{OCH}_{3}\right)_{2}-\right.$ $\left.(\mu-\mathrm{F})_{3}(\mathrm{~F})_{2}\right]\left(\mathrm{BF}_{4}\right)\left(J / k_{\mathrm{B}}=-274 \mathrm{~K}\right)($ van Albada et al., 2003). Another example of bridging 2-apym ligands is found in the zigzag chain structure of Cu_{2} (acetate) $)_{4}(2-\mathrm{apym})$ (Smith et al., 1991; Blake et al., 2002). We are aware of no coordination complexes derived from 4-apym or 5-apym. The N atoms of the 2 -apym and 4 -apym derivatives are more sterically hindered than the 5 -apym derivative, thus making 5-apym a promising candidate for a bridging ligand. While the crystal structure of the 4 -apym ligand has been published (Van Meervelt \& Uytterhoeven, 2003), we report here, for the first time, that of 5-apym, viz. (I).

The 5 -apym molecule lies on a twofold rotation axis. The atom-numbering scheme is shown in Fig. 1. The bond lengths and angles are typical of pyrimidines, including pym (Wheatley, 1960; Furberg et al., 1979), 2-apym (Scheinbeim \& Schempp, 1976; Furberg et al., 1979) and 4-apym (Van Meervelt \& Uytterhoeven, 2003). The ring atoms deviate only slightly from coplanarity, with atoms N 1 and C 2 out of the least-squares plane by 0.0022 (6) \AA. By symmetry, the amino N atom lies in the plane of the pym ring. The dihedral angle between the plane of the amino group and the least-squares plane of the ring is $9.4(17)^{\circ}$, signficantly smaller than the 22° angle observed in 2-apym (Scheinbeim \& Schempp, 1976).

As illustrated in Fig. 2, the packing of the 5-apym molecules is stabilized by an $\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{~N} 1^{i}$ hydrogen bond (Table 2). The hydrogen-bond network results in the formation of twodimensional sheets parallel to the $a b$ plane. The pym plane is tilted by $11.50(6)^{\circ}$ with respect to the $\underline{\boldsymbol{a} b}$ plane. Adjacent sheets are arranged such that uniform slipped stacks of 5apym molecules form along the $a+b$ diagonal. The 5-apym centroid-centroid distance of $3.723 \AA$ and perpendicular
separation of $3.362 \AA$ confirm the presence of $\pi-\pi$ interactions (Spek, 2003).

Experimental

5-Aminopyrimidine was prepared according to the literature procedure of Phillips et al. (1999). Single crystals suitable for X-ray diffraction were grown by recrystallization from benzene.

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}$
$M_{r}=95.11$
Monoclinic, $C 2 / c$
$a=7.5982$ (10) \AA
$b=10.1226$ (13) \AA
$c=6.8106$ (10) A
$\beta=118.596(5)^{\circ}$
$V=459.93$ (11) \AA^{3}
$Z=4$

$$
D_{x}=1.374 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1724 reflections
$\theta=3.4-29.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Rod, colourless
$0.50 \times 0.22 \times 0.20 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: integration
($X P R E P$ in SHELXTL;
Sheldrick, 2001)
$T_{\text {min }}=0.956, T_{\text {max }}=0.987$
641 independent reflections
584 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=29.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 13$
$l=-9 \rightarrow 9$
2534 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0723 P)^{2}\right. \\
& +0.0952 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.007 \text { 。 } \\
& \Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.130$
$S=1.12$
641 reflections
37 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	$1.3298(11)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.3993(11)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.3262(14)$	$\mathrm{C} 3-\mathrm{N} 2$	$1.3531(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 1^{\mathrm{i}}$	$125.97(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\mathrm{i}}$	$114.65(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.97(9)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$116.72(9)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$122.68(6)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 3$	$117.7(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$179.77(6)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$0.43(12)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}^{\mathrm{i}}$	$-0.23(6)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$-0.21(6)$

Symmetry code: (i) $-x, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.89(2)$	$2.23(2)$	$3.1078(11)$	$170(2)$
Symmetry code: (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.				

H atoms on aromatic C atoms were positioned geometrically and refined with a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$. The amino-group H atom was located in a difference map and its position freely refined. For all H atoms, $U_{\text {iso }}(\mathrm{H})$ was constrained to be 1.2 (aromatic) or 1.5 (amino) times $U_{\text {eq }}$ of the carrier atom.

Figure 2
A packing diagram for 5-aminopyrimidine, illustrating the two-dimensional network in the $a b$ plane. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are depicted as dashed lines.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Work at Argonne National Laboratory is sponsored by the US Department of Energy, Office of Basic Energy Sciences,

Division of Materials Sciences, under Contract W-31-109-ENG-38. RJF, an undergraduate student at the University of Chicago, is a participant in the US Department of Energy (DOE) Student Undergraduate Laboratory Research Internship (SULI) Program, sponsored by the Argonne Division of Educational Programs.

References

Albada, G. A. van, Quiroz-Castro, M. E., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2000). Inorg. Chim. Acta, 298, 221-225.
Albada, G. A. van, Roubeau, O., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2003). New J. Chem. 1693-1697.

Blake, A. J., Hubberstey, P. \& Sampson, C. L. (2002). Acta Cryst. E58, m99m101.
Bruker (1997). SMART. Version 5.05. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SAINT. Version 6.28a. Bruker AXS Inc., Madison, Wisconsin, USA.
Feyerherm, R., Abens, S., Günther, D., Ishida, T., Meissner, M., Meschke, M., Nogami, T. \& Steiner, M. (2000). J. Phys. Condens. Matter, 12, 8495-8509.
Furberg, S., Grogaard, J. \& Smedsrud, B. (1979). Acta Chem. Scand. B, 33, 715724.

Jensen, P., Batten, S. R., Moubaraki, B. \& Murray, K. S. (2000). Chem. Commun. pp. 793-794.
Kusaka, T., Ishida, T., Hashizume, D., Iwasaki, F. \& Nogami T. (2000). Chem. Lett. pp. 1146-1147.
Manson, J. L., Gu, J., Schlueter, J. A. \& Wang, H.-H. (2003). Inorg. Chem. 42, 3950-3955.
Manson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Mygren, C. L. \& Qualls, J. S. (2005). Inorg. Chem. 44, 989-995.
Phillips, O. A., Murthy, K. S. K., Fiakpui, C. Y. \& Knaus, E. E. (1999). Can. J. Chem. 77, 216-222.
Scheinbeim, J. \& Schempp, E. (1976). Acta Cryst. B32, 607-609.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Smith, G., Kennard, C. H. L. \& Byriel, K. A. (1991). Polyhedron, 10, 873-876. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Van Meervelt, L. \& Uytterhoeven, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 481-482.
Wheatley, P. J. (1960). Acta Cryst. 13, 80-85.
Yasui, M., Ishikawa, Y., Akiyama, N., Ishida, T., Nogami, T. \& Iwasaki, F. (2001). Acta Cryst. B57, 288-295.

